Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress.

نویسندگان

  • Thomas Pannicke
  • Antje Wurm
  • Ianors Iandiev
  • Margrit Hollborn
  • Regina Linnertz
  • Devin K Binder
  • Leon Kohen
  • Peter Wiedemann
  • Christian Steinhäuser
  • Andreas Reichenbach
  • Andreas Bringmann
چکیده

The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Müller Cell Reactivity in Response to Photoreceptor Degeneration in Rats with Defective Polycystin-2

BACKGROUND Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degenerat...

متن کامل

Müller cell response to blue light injury of the rat retina.

PURPOSE In addition to photoreceptor degeneration, excessive light causes degenerative alterations in the inner retina and ganglion cell death. A disturbance in osmohomeostasis may be one causative factor for the alterations in the inner retina. Because Müller cells mediate inner retinal osmohomeostasis (mainly through channel-mediated transport of potassium ions and water), the authors investi...

متن کامل

Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina.

The development of edema in the diabetic retina may be caused by vascular leakage and glial cell swelling. To determine whether diabetic retinopathy alters the swelling characteristics of retinal glial cells and changes the properties of the glial membrane K+ conductance, isolated retinas and glial cells of rats were investigated at 4 and 6 months of chemical diabetes. After 6 months of hypergl...

متن کامل

Osmotic stress decreases aquaporin-4 expression in the human retinal pigment epithelial cell line, ARPE-19.

The regulation of water movement is of utmost importance for normal retinal function. Under physiological conditions, water is transported, dependent on the osmotic gradient, through the retinal pigment epithelial cell layer from the subretinal space to the choroid. The osmotic gradient has been found to be modified in eye diseases, thus leading to water accumulation in the subretinal space and...

متن کامل

Genetic Deletion of Laminin Isoforms β2 and γ3 Induces a Reduction in Kir4.1 and Aquaporin-4 Expression and Function in the Retina

BACKGROUND Glial cells such as retinal Müller glial cells are involved in potassium ion and water homeostasis of the neural tissue. In these cells, inwardly rectifying potassium (Kir) channels and aquaporin-4 water channels play an important role in the process of spatial potassium buffering and water drainage. Moreover, Kir4.1 channels are involved in the maintenance of the negative Müller cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 88 13  شماره 

صفحات  -

تاریخ انتشار 2010